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Role of semiclassical description in the quantumlike theory of light rays
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An alternative procedure to the one by Gloge and Mar¢ds®pt. Soc. Am59, 1629(1969] for perform-
ing the transition from geometrical optics to wave optics in the paraxial approximation is presented. This is
done by employing a recent “deformation” method used to give a quantumlike phase-space description of
charged-particle-beam transport in the semiclassical approximation. By taking into account the uncertainty
relation(diffraction limit) that holds between the transverse-beam-spot size and the rms of the light-ray slopes,
the classical phase-space equation for light rays is deformed into a von Neumann-Ilike equation that governs
the phase-space description of the beam transport in the semiclassical approximatiofi.dter#ée time are
replaced by the inverse of the wave numbeér,and the propagation coordinate, respectively. In this frame-
work, the corresponding Wigner-like picture is given and the quantumlike corrections for an arbitrary refrac-
tive index are considered. In particular, it is shown that the paraxial-radiation-beam transport can also be
described in terms of a fluid motion equation, where the pressure term is replaced by a quantumlike potential
in the semiclassical approximation that accounts for the diffraction of the beam. Finally, a comparison of this
fluid model with Madelung’s fluid model is made, and the classical-like picture given by the tomographic
approach to radiation beams is advanced as a future perspé&h@E63-651X99)18110-9

PACS numbegps): 41.85—p, 42.50—-p, 03.65.Ca

I. MUTUAL CONNECTION OF OPTICS AND MECHANICS |®(x,y,2)|? gives the normalized e.m. power density as well

as the probability density of finding an e.m. ray at the trans-

Thirty years ago, Gloge and Marcu$g| extended the verse locationX,y). Equation(1) is appropriate for describ-
correspondence between optics and mechanics, going frofig an e.m. beam traveling along theaxis.
quantum mechanics to wave optics. They performed a tran- |t is worth noting that the limit—0 recovers the geo-
sition from geometrical optics to wave optics in a way thatmetrical optics (light-ray equation In fact, the physical
was fully similar to the one given to transit from classical meaning ofX is given in terms of the diffraction parameter.
mechanics to quantum mechanics. In the formal quantizatiomhe conditionX #0 in the paraxial approximation is con-
of Gloge and Marcuse, a set of quantization rdlesvhich7  nected to a weak displacement of light rays from the beam-
and the time are replaced by the inverse of the wave numbgjropagation direction in such a way as to produce a mixing
and the propagation coordinate, respectivedyntroduced in  petween them. When the beam is travelingzacuq in the
the Hamiltonian for electromagnetie.m) rays. The resultis exact geometrical optics limiti(=0), if the ray slopes are
the e.m. wave equation whose limit, in the paraxial approXiqnitially all parallel to each other, the ray will be straight-line
mation, gives a Schrbnger-like equation called the Fock- parallel to the propagation direction. For finife the ray’s

Leontovich equatior2]: mixing (diffraction effect produces a hyperbolic hyperbo-
loid around thez axis that corresponds to a typical caustic
d X2 ? & shape[3].
iXECD: — 7(% + a_y2 O+UD, (1) The procedure of Gloge and Marcuse proved to be fruitful

because it provided for transferring algorithms and many so-
lutions of quantum mechanics to radiation beam physics, es-
whereX=\/27 (\ being the wavelengjhz is the propaga- pecially for optical fiber§4,5], coherent and squeezed state
tion coordinatex andy are the transverse coordinates, andtheories[6—11], Schralinger cat state§12,13, and phase-
U is an affective dimensionless potential energy proportionaspace investigations within a Wigner-like pictddet] where
to the refractive index. Equation(1) is an equation for the a quasiclassical distribution, fully similar to the quantum
complex e.m. field amplitude. Provided that Wigner transform{15] governs the paraxial e.m. ray evolu-
tion. At the present time, quantum methodologies are applied
o o to a very large body of branches in which the physics in-
j J |®(x,y,2)|?dxdy=1, (2)  volved is basically classical. Such kinds of descriptions are
—o0J - referred as tauantumlike descriptionl6,17).
In this paper, we propose a method, alternative to the one
of Gloge and Marcuse, to transit from geometrical optics to
*Electronic address: fedele@na.infn.it wave optics, namely, from the classical-like description to
On leave from P. N. Lebedev Physical Institute, Leninskii Pros-the quantumlike description of light-ray optics, by using a
pekt 53, Moscow 117924, Russia. Electronic addressdeformation method employed recently in electron optics
manko@na.infn.it [18]. This allows us to get an effective description of light-
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ray optics that shows the role played by the semiclassical ip . - R ap
approximation in the quantumlike theory of light rays. In —+(P.-V,)p—(V, U).—=0. (6)

Sec. Il we present the classical-like phase-space equation for Jz P,
light rays for an arbitrary refractive index. In Sec. Ill the

defor_matic_m procedure is used_to transit from_ the abovg gt s consider, around the poirﬁi(),ﬁio), the phase-space
classical-like phase-space equation to an effective quantunyg|ume element?r, d>P, =dxdydP,dP,. Here the quan-
like equation in the semiclassical approximation, which for—,[.t P B a2 d2P. is th byb'l't f findi
mally coincides with the von Neumann equation. This “de- _'y (710 Pro.2)dr 0P, is E pro.a ity ot finding a
formed” phase-space description allows us to recover thdight ray at the transverse locatiang with slope?, o, pro-
Wigner-like picture, which is widely used to describe the Vided that the following normalization condition holds:
e.m. beam transport in phase spatd]. The quantumlike
picture of Gloge and Marcuse as well as the Fock-
Leontovich Schrdinger-like equation are then recovered in
the semiclassical approximation. In Sec. IV the hierarchy of
the moment equations that are associated with the von
Neumann-like equation is obtained, and a fluid model that i quation(6) describes the evolution of the light rays in the
associated with the beam transport in real space is derived Iparaxial approximation and in the geometrical optics context.
truncation of the above hierarchy. In particular, the cases offowever, we point out that E@6) is still suitable to describe
both the classical and semiclassical fluids are considered. lime beam optics beyond the exact geometrical_optics limit. In
Sec. V the fluid description is compared with Madelung’sfact, in the case of vacuunh=0, and in the case of linear
fluid model. Finally, in Sec. VI conclusions are summarized focusing (defocusing devices,U = k;x?/2+k,y%/2, Gauss-
remarks are presented, and future perspectives are discussggh beams, whose propagation is affected by the diffraction,
with special attention given to the classical-like picture pro-can be also described by E@). To give the reader an idea,
vided by the tomographic approach to radiation beams.  |et us consider a simple two-dimension&kD) (the
y-transverse component is neglected, for simpljcity
Il. CLASSICAL-LIKE PHASE-SPACE EQUATION focusing/defocusing, infinitely thickin both thex andz di-
FOR LIGHT RAYS rectiong device with refractive index of the formJ

) ) o o =k(2)x?/2, with k(z) being the strength of the device. Thus
In this section we develop the classical-like description ofin this case Eq(6) becomes

geometric optics in the phase space in terms of a classical
phase-space distribution of the light rays in the case of an
arbitrary refractive index. We confine our attention to the
case of the paraxial approximation, namealy/dz=x'<1
anddy/dz=y’<1. Taking into account this approximation,
it can easily be shown that the following single-light-ray
equations hold:

f p(F, P, ,2)d?r  d?>P =1. 7)

dap ap ap B
EﬂLP&—k(Z)X%—O, 8)
where, for simplicity, we have puP,=p. We look for a
solution of Eq.(8) of the form

2 1
ar _z 3) p(x,p,z)=Aeer( - gle(@x*+2a(2)xp+b(2)p?] |,
dz "4’
9
d73l - whereA andB are positive constants arafz), b(z), ¢c(2)
= _VJ_U! (4)

are functions to be determined. Thus, by defining the second-
order momentsr,(2z), o,(2), andoy(2z) of p as

where 7, =xX+y¥y, P,=(n/ng)x'/(1+x'2+y’'?)Y2~(n/

no)x', Py=(n/ng)y’/(1+x'?+y'?)"?~(n/ng)y’, and P, 0)2((2)=J p(x,p,z)x2dxdp=(p?) (10)
=Px+P,¥ (ny being the constant averagermtlose to the

z axis). Thus we can associate with a single ray a classical- _

like particle trajectory. Consequently, E@) shows that the (the beam spot-size

refractive index provides an effective force on each single

light ray. Consequently, in the paraxial approximation, as for 2 5 5
the particle systems, we may introduce a distribution in op(2)= | p(x,p.2)p"dxdp=(p%) 1D
phase spacg(x,y, Py, P, ,2) that is constant in its character-
Istics, I.e., (the momentum spread or rms of ray slopesd
ap
-, TipHI=0, (5) oxp(z)=f p(x,p,z)xpdxdp=(xp) (12)

where{,} denotes the classical Poisson brackets. Equatiofthe ray correlation Eq. (9) can be cast in the following
(5) can be explicitly written as normalized form:



6044 R. FEDELE AND V. I. MAN'KO PRE 60

1 2, )
p(x,p,z)zﬁex —p[ap(z)x —20yp(2)Xp

+a§(z>p2]], (13)
where
doy
o,=Xb, G'Xp=Xa=0'XE, o,=Xc, (14
and
B—X 15
=5 (15

It can be also easily proven that;(z)o;(2)—o%,(2)
=X?/4=const, and consequently,

0'>2((Z) GE(Z)B , (16)

N =<

must also represent, according to the results of Sec. I, the
e.m. power density that is proportional to the modulus square
of the e.m. field amplitude associated with the beam.

IIl. DEFORMED PHASE-SPACE DESCRIPTION

In this section, we apply a deformation method that was
used recently in electron optics to transit from the classical
phase-space ray equation to a quantumlike phase-space ray
equation in the semiclassical approximatjas]. We want to
make a similar transition here, starting from the classical
phase-space light ray equati¢d). We still confine our at-
tention to the 2D casé&hey direction is ignored, for sim-
plicity) and take the same steps a$18]. In spite of the fact
that the formalism we apply below is almost identical to the
formalism applied for the description of the electronic rays
[18], the radiation field treated here is a physically different
object; this is the reason we present in detail how to derive
the von Newman equation for the phase-space description of
light beams, which is a new aspect in comparison with the
electronic ray physics df18].

Let o be the minimum spot size that can be achieired

which represents a sort of quantumlike uncertainty relationvacuowith an initial focusing condition, and let us define the
In particular, the minimum uncertainty corresponds to theparametem=X/(20,). It is easy to see that, in the paraxial

well-known diffraction limit[3]

=<

(O'xa'p)min2 2" (17)

Equation(17) is usually observed when the focusing of a
monochromatic radiation beam of wavelengtis produced

approximation, this quantity is much smaller than 1. In fact,
by denoting byo,, the rms of the ray slopes corresponding
to the above minimum spot size, from E4.7) is clear that

X dx 2\ 1/2
ns—:0p02<(d—z) > <1. (20)

ag
0 max

in vacuo(3]. Furthermore, we observe that the above phase- the apove 2D phase-space light-ray equation for an arbi-
space distribution function of light rays associated with Brary refractive index can be explicitly written as

Gaussian beam gives the following space density:
2

X —+p—— — ——=0. (21)

1
Ax(x,z)=J p(x,p,z)dp= \/T)Z((Z)exr{ - 202(2)

(18) By introducing the dimensionless variables

and the following ray-slope distribution: _z _ X 09
= 27'0’ = 70, (22
Anp2)= [ plxpzrtre —— >
(19 _ o
dp_  dp du | dp
It is worthwhile to observe that, in the case where the beam TP\ ap Y (23
is in a vacuum k=0), solution(9), remains formally the

same.
Remarkably, Eqs(17) and (13) show that, due to the
?alf;rsaicntlSrr:allsrgl_ts,[;/:/;é:?ggic:)tnrseigdeamgr:)gr(jtg?d?;hrg?{giltlght According to the above results, the ir_ldist_inguis_hak?ility
X—0 is not exactly taken, but nevertheleess considered, among two or more rays gue_t(? the paraxial diffraction is of
however small, we are still within the framework of geo- the order of»<1. ThusgU/dx in Eq. (21) can be conve-
metrical optics. Thus in the paraxial approximation E8). me_ntly_replaced by_ the following symmetrized Schwarz-like
still describes the phase-space evolution in a linear devicdinite difference ratio:
On the other hand, the diffraction limit introduced by non- - _
zeroX introduces, by virtue of Eq17), an indistinguishabil- U U+ 7/2)—U(X—7/2)
ity among the light rays. ax 7 '
In the next section, we develop an effective phase-space
description that takes into account this indistinguishability. This way, Eq.(21) must be replaced by the following equa-
We conclude the present section by observing thgix,z) tion for an effective distribution, say,,(X,p,z; 7):

where p=p(X/209,p,2200)=p(X,p,z) and U=U(x/
20,2/1200)=U(X,2).

(24)
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dpw  Jpw U+ 9/2)—U(X— 7/2) dp,
ou | o %ow _JOH 717V 712 Sow_ - o Ax(x,Z:X)=Jpw(x,p,Z:X)dp. (28)
gz P ax 7 ap

provided thatp,, also is normalized over the phase space.
Remarkably, from the above results it follows that there
may exist a complex function, sa¥(x,z), such that

Given the smallness ofy, multiplying both the numerator
and denominator of the last term of the left-hand diths)
by the imaginary unit, we have
- — _ A(X,z;X)=V(x,2)V*(X,2), (29
U(X+ 5/2)—U(X—n/2)  dpy,
iy % which is also used for the description of pure quantum states;

o B and the following quantumlike density matrix
UX+i(nl2)dlap)—UX—i(nl2)dld
~ OcHi(nl2) p)ir; (x=i(nl2) p)FW. (26) G(x,x",2)=V¥(x,2)V*(x',z2), (30

i i which is also used for the description of mixed quantum
Thus, going back to the old variablesandz, Eq. (25 as-  giates, connected wifh, by means of the following Wigner-

sumes formally the look of a von Neumann equafi®8,19  |ike transformation:
d a i X 9 X 9 1 (= y y _py
{E_Fp&_'—i U X+I§%>—U(X—I§% “pw—o, pW(X'p’Z;X):mf,wG X+§,X—§,Z>6X[{IT)dy,
(27) (31)

where p,=pw(200X,p,200Z;209m) =pw(X,p,Z;X). Equa- or, for the pure state,
tion (27) shows that, in the framework of this effective de-

y
X+ E'Z)

Xy

scription, the phase-space evolution equation for light rays is ) 1 (=

a quantumlike phase-space equation, wiieend the timet pw(X,p,Z.K) = 2aK f_mlp

are replaced bY and the propagation coordinate respec-

tively. However, some considerations are in order. y py
Approximation(24) is due both to the smallness gfand X= E'Z> exp( ! T) dy. (32

the fact that an evaluation &f variation around the location

X does not make sense within an interval of sizeThis, in ~ Consequently, ¥(x,z) must obey to the following

fact, corresponds to the intrinsic uncertainty produced amon&chralinger-like equation:

the rays by the paraxial diffraction. Thus, E85) represents

2 92
a possible way to take into account the ray mixing produced : ﬂz _ X_ +
by the paraxial diffraction in this evaluation. Ly 7 a2 TUxDY, 33
Since

which is exactly the Fock-Leontovich equation in the case of

. in o . in o au g P a 2D radiation bearfsee Eq(1)]. Note that Eq(1) has been
Ul x+ = _) _U<y_ — — = —=i 77—+O( 773—3>, recovered by the present deformation method in the semi-
2 9p 2. dp) ox "ap ap classical approximation only. Nevertheless, it is valid, in the

o ) ) ) paraxial approximation, beyond the semiclassical approxi-
approximation(26) is equivalent to assuming that the terms jation as well.

O(%° (%1 9p?)) are small corrections compared to the lower-
order ones, according to the paraxial approximation. Conse-
quently, approximatiori26) plays the role of the semiclassi-
cal approximatiorj20].

While the distributionp(x,p,z) involved in Eq.(21) is In this section, we consider the hierarchy of moment
introduced in a classical framework and is positive definite equations generated by the von Neumann—like equ&#ion
the function p,(x,p,z;X) is introduced in a quantumlike up to second order. In this way, we can give the picture that
framework and is not positive definite. In fact, in this quan-we call the “radiation fluid picture.” We distinguish the case
tumlike contextp,,(x,p,z;X) cannot be used to give infor- of X—0 (“classical radiation fluid’) from the one of small
mation within the phase-space cells with size smaller than wavelengths‘“‘semiclassical radiation fluid). To this end,
due to the paraxial diffraction, i.e., due to the indistinguish-one can calculate the set of moment equations associated
ability among the light rays. It is clear from the von with Eq.(27), respectively. Defining the following Liouville
Neumann-like equatiof®7) thatp,, is a sort of Wigner-like  operator,
function, which is not positive definite, due to the quantum-
like uncertainty principle given in Sec. Il. In analogy with d da [dU) d
quantum mechanicg,,(X,p,z;X) can be defined as a quasi- 9z Pox "\ ox ap
distribution, even if itsx projection andp projection are
actually configuration-space distribution and momentum{U being an arbitrary refractive index that can be expanded
space distribution, respectively. In particular, we assume thah Taylor series with respect t9), it is easy to see that Eq.
the probabilityA,(x,z;X) introduced above is (27) can be cast as

IV. CLASSICAL AND SEMICLASSICAL RADIATION
FLUIDS

(34
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* -1 k X 2k0')2k+lU a2k+1
( ) ( ) Pw (35)

E”W:.Zl (2k+ 1)1 | 2] gx&FT g

Note that Eq.(35) reduces to Eq(21) when the sum at the
rhs is zero. Remarkably, this circumstance is verified no
only in the limit X—0. In fact, it occurs also when, keeping
nonzeroX, the refractive index has a quadratic form in
x—this is in full agreement with the results presented in Sec
[I. By introducing thev-order (v being a non-negative inte-

gen moment of as

MO(x,2)= f p"Lpwdp, (36)
Eq. (35) leads to the continuity equation for=0,
0AX+ 7 (AN)=0 3
0z 5( X )_ ’ (7)
the motion equation for=1,
y J Ve Ju 1 oIl 38
a2 Vox)VE TR TR, 39
the energy equation far=2,
Ju o Vv aHV— aUAV dQ 39
27 T ax UV (IIV) = —| —— AV = —, (39
and so on, where
1 ©
V2= [ poudo=(o), (40
X — 00
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pw, but contains the i+ 1)-order moment of this function.
Provided that a closure equation is introduced, which relates
the (v+1)-order moment with the lower-order ones, the
truncated set of equations, consisting of moment equations

p to thev-order plus the closure equation, is fully equiva-
ent or Eq.(35), respectively.

The fluid description is given when the truncation is in-
troduced atv=1 together with a closure relationship involv-
ing the second-order moment. Actually, the picture that we
could obtain from the truncation involving E¢39) can be
considered as a fluid picture as well. Furthermore, note that
all of Egs.(44) account for quantum-like corrections beyond
the semiclassical approximation.

We can estimate the order of the paraxial diffraction in-
troduced in Eq.(38), assuming the form(13) for p,, and
making use of Eqs40) and(41). This results in

X2
4oy
Since
X = =y<1 46
ZO'X\TO_,”< ’ ( )
the last term in Eq(38), viz.,
191 X% 1 9A,
N X agZ A, o “0
X oy Ny X

represents the semiclassical approximation of the paraxial
diffraction at the level of the fluid description. Remarkably,
truncating the hierarchy at the ordehigher and higher, we

is the current VelOCity, which is eXperimenta”y the ﬁrSt-Orderget amesoscopidescription that is deeper and deeper_ Tak-

moment ofp,,,

I(x,2)= f:(p—v)zpwd P=AL(P=(P)p)?)p, (4D

ing all the infinite hierarchy, we will have the deepest meso-
scopic description of the systefbeyond the semiclassical
approximation, which corresponds to a fluid scheme that we
could call “Madelung’s radiation fluid”(see Sec. ¥

which is essentially the radiation pressure or the second-

order moment op,,,

1 1
u(x,z)EEI'H— EAxvz, (42)

1 0
Q(x,z)= 2 jﬁw(p—V)3depEAx((p—(p>p)3)p )
(43

which is essentially the analog of the heat. Additionally,

from Eq. (36) we also obtain

Kmax=(v—1)/2 v X 2k
(v) = —_ 1)k _
(92k+1U o

><_k_&xz T | p*~ % 1p,dp#0,

Yv=3. (44)

A. Classical radiation fluid (diffractionless beam)

For arbitrary refractive indekl, the fluid description for a
diffractionless beam can be obtained from E&3) and(38)
in the limit X—0,

oND
(A (0)y(0)y —
5z +(9X(A" V=0, (48)
Jd J oU
2 yo Lo - 72
0z v X v ox’ (49

where the superscriggh) means that we are taking the above
limit. In this limit, we observe that

pw(%,p,2:X—0)— AL (x,2) 8(p— VO(x,2))=po(X,p,2),
(50)

and the local slope of the light rays=dx/dz, is determined
only by the gradient ofJ. In particular,in vacuo(U=0) a

The characteristic of these moment equations is that the ormeonochromatic beam has the phase-space density of the

that is of v order is an evolution for the-order moment of

form Py8(p—V,), with Py andV, constants.
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Note that systent48),(49) is naturally closed. It has been where herell plays the role of the transverse kinetic pres-
used in radiation beam optics to solve a number of problemsure. On the other hand, radiation pressure is the effect that

when the diffraction is negligiblg21]. radiation produces on the surrounding®nderomotive ac-
tion), which is proportional to the square modulus of the e.m.
B. Semiclassical radiation fluid field amplitudeE; i.e., [T=|E|2. We note thatE|? and A (Y

Within the fluid description, we now also take into ac- essentially coincidéapart from a normalization factpri.e.,

1 . .
count the paraxial diffraction. Thus, the semiclassical fluid is|E|2°C_A§< ) Conseq_uently, we can provide f_or the following
described by Eq¥37) and(38) plus a suitable closure equa- physical mtgrpretatlon of the closure equati@®). We ob-
tion. The result shown by Eq45) for Gaussian beams sug- SErve that S'nc.ePNX/Z‘TX'. the mean trang,verse'energy, due
gests that we assume, in general, this relationship, at thi@ the diffraction, associated with a single light rdiy
present level of fluid description, to be the required suitable/acuo is &= 3 o5~ X?/80%. We recall thatA (x,z) is the
closure equation. Consequently, E(&7) and (38) become  probability of finding a light ray at locationx(z). Thus,

using arguments analogous to the ones used for particle sys-

8A§1)+1(A(1)V(1))=0 51) tems (i.e., electronic-ray systemswe conclude that the
dz  x % ’ transverse radiation pressure is given by

VPO NI N SO S 8 ¥ o

> VT T X T 202 A0 Tax (52 I1(x,2)=2Ay (x,z)£0(2)~4U§(Z)AX (x,2). (54

where the subscrifdtl) means that the paraxial diffraction is
now taken into account. This system is fully similar to the = C. Coherent states in the semiclassical fluid description
one that can be usually derived for the transverse motion of
a dilute particle beam, assuming a fluid model with the idea{
gas state equatiof?2]. In fact, in this analogy, the term

(X2/452) (LIAD) (aA V1 9x) is replaced, for particle beams,
by (€2/402)(1/n)(an/dx) = (v&,/c?) (1) (an/ax), wheren

is the beam number densityjs the transverse particle beam
emittancey,, is the transverse thermal velocity, and the fol-

In this section, we give a relevant example of the use of
he results presented in the Sec. IV B. In particular, we show
that Eqs(51) and(52) are suitable for describing in a natural

way coherent states associated with the radiation fluid mo-

Let us start by considering the caseutix,z) independent

of x, viz.,
lowing properties holde/20,=v,/c<1 (see[23]), and the
ideal gas state equation assumed in this case is V(X,2)=po(2). (55)
2 2
= kB_;n: E—Zn: V_tzhn, (53  Inthis way, Eq.(52) can be easily integrated with respect to
m 4oy C X, giving the normalized density

AD(x2) wexp{—(4o§<z)/x2)w<x,z>+pa<z>x+g<z>]}~ | -

exp{— (40 (2)/X*)[U(x,2) + po(2)x+g(2) T}dx

whereg(z) is an arbitrary function oz, and Eq.(51) be- In general, this quantity could not be zero. Taking into ac-
comes count this observation, we can now defimg(z) as
AW AW
gz~ Pl &) oX(2)= f [x—%(2PA(x2)dx.  (60)

Note that the density is Gaussian if, and onlyUf,is qua-
dratic inx. Thus, substituting Eq$56) and(57), we obtain  We now concentrate our attention on the case in which the

U U beam does not spread, namely,
J 17

—= +Po(2) ——=—po(2)X—Po(2)Ps(2) —9(2). (58
oz " POt x Po Pot2)Po g o(Z)=0,o=const. (61)

Let us define the centety(z) of the transverse distribution ) o ) _
AW(x,2), i.e., the mean value of Thus, by differentiating Eq(60) with respect ta and taking
X ’ 7 Iy

into account Eqs(57) and(61), we obtain

_ [T oA
xo(2)= f_xxAX (x.2)dx. (59 X3(2)=po(2). (62
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Let us next concentrate our attention only on the case whergtandard descriptiof6—8|. We would like to point out that

U is independent of. In this case, Eq(58) can be easily
integrated with respect to, giving

|

whereG is an arbitrary constant, which, without loss of gen-

1 dpj(z)
2 dz

3 1
Po(2)

1po@ ,
2 po(2)

Ux)=— +9'(2) | x+G,

(63

erality, can be put equal to zero. Consequently, the only pos-

sible form of U(x) compatible with Eq.(55) is to be qua-
dratic with respect tx. For instance, by choosing

1
Ux)= Ekx2 with k>0, (64)
from Eq. (63) we obtain
Po+Kpo=0 (65
and
2
p
9(2)= % +0o, (66

whereg, is an arbitrary constant. On the other hand, in view
of Egs.(58), (64), and(65), Eq.(56) can be cast in the form

AV (x2)= \/ng;w exr{ - Z‘fSk (x=x0(2))?],
(67
with
’ 1 2
Po(2)=—kXo(2), 9(2)=5kxp(2). (68)

Consequently, combining Eq&2), (65), (66), and(68), we
obtain

1 2 1 2
§p0(2)+ Ekxo(z)zgozconst (69)

and
Xg+kxo=0. (70

Finally, by combining Eqgs(60), (61), and (67), we obtain
the condition that relatels, X, ando,g,

X2
andA (") can be written as
1 — (x—X%o(2))?
A (x,2)= ex;{ 72
X ( ) ,_27T0'X0 20_)2(0 ( )

We thus can conclude that the distributiéf2) with Egs.
(61), (62), (65), (68), (70), and (71), describes a coherent

the quantum coherent states, which are described by the true
Schralinger equation, are only analogs of the ones described
by the Fock-Leontovich equation as [ih4]. The quantities
Xo(z) andpgy(z) account for the real and imaginary parts of
the complex shifta, which generates all coherent states,
starting from the ground state of both the quan{ém8| and
guantumlike[24] harmonic oscillator for particle beams,

_ Xo(Z) | oxoPo(2)
= + X

(2) =a(2)+iay(z). (73

20')(0

Still keepingU independent of, we conclude this section
by considering the case of the equilibrium stafgstionary
state$ associated with the semiclassical radiation fluid,
which corresponds to the caseqf=const. Thus, Eq(62)
gives po=0 and from Eq.(58) we getg=const. Conse-
quently, Eq.(56) gives

40'?0
exg — X U(x)
AP (0= — pps: (74)
f exr{— XXOU(X) dx

Note that Eq.(74) represents a stationary state of the radia-
tion beam for an arbitrary refractive indék(x) in the semi-
classical approximation.

V. MADELUNG'S RADIATION FLUIDS

In this section, we give the full quantumlike description of
the radiation beam beyond the semiclassical approximation
developed in Sec. IV. To this end, let us start from the fol-
lowing eikonal representation of the complex e.m. field am-
plitude ¥ appearing in Eq(33),

(75

W (X,2) =A§’2(x,z)exp{)l(—®(x,z)

Thus, substituting Eq.75) in Eqg. (33), we obtain the follow-
ing system of equations:

Ny
e +(9_x(AXV):O’ (76)
AN aU+x2(9 1 PAL? .
a2 VxS Ttz wx A | 0
where the current velocity is now given by
d0(X,z)
V(X,2)= Y (78

Equations(76) and(77) have been widely used in the litera-
ture [25,26 to describe the paraxial propagation of a radia-
tion beam, especially in nonlinear media, where the refrac-
tive index depends on, (i.e.,|¥|?), which is a functional

of A,. Moreover, Eqs(76) and(77) constitute a closed sys-

state associated with the semiclassical radiation fluid. ltsem and are formally identical to the equations that describe

physical meaning is fully equivalent to the one given in the

the Madelung fluid 27].
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The last term on the rhs of Eq77) accounts for the and thus given both the classical and semiclassical radiation
pressure term beyond the semiclassical approximation. If wéuid descriptions in the paraxial approximation. In particu-
take for A, the same form as the one given by E§8), the lar, the inclusion of the paraxial diffraction in the fluid con-
pressure term of Eq77) coincides with the one shown in text, which characterizes the semiclassical radiation fluid,
Eq. (47), and thus in this case coincides withv(}). In fact,  has allowed us to naturally describe the coherent states asso-
the term ciated with the radiation beam, whose fluid interpretation is

in full agreement with the standard one. Finally, a compari-

X2 0 1 &ZA)%’Z son between the above radiation semiclassical fluid and the
2 ax A_}F “ox2 Madelung fluid has been given.

A classical-like approach, which was developed recently
becomes in quantum mechanics and in quantum optics, is the tomog-
raphic one for describing quantum states. As a natural imple-

X2 1 9A, mentation of the classical-like picture given by Madelung’s

T 42 AL ox fluid, which will be given in an our future paper, we now

X X

briefly discuss this method as applied to the e.m. beam trans-

One important consequence of this result is that cohererf°™t L L .
states found in the semiclassical approximation for the semi- 11€ @bove transition to describe light beams in terms of

classical radiation fluidésee Sec. IY are exact solutions of the Wigner function(31) aqd in terms of thg .Iight-.beam
the Madelung radiation fluid, as well. However, the station-VaVve functiorlsee(29)] provides for the possibility of intro-

ary states are given for(x,z) =po(2)=0. Thus it follows ducing a symplectic tomography transform of the Wigner

from Eq. (77) that the square root of the density, must function and the light-beam wave functiok < 1)
satisfy the following quantumlike eigenvalue problem asso-

ciated with the Fock-Lentovich equation: W(X,M,V'Z):J pw(X,p,2)
X2 °A"° dkdqd
750 tUAal 9 <otk op)) TP
where £ is a constant. Stationary stat€&l) are of course (80)
only an approximate solution of E¢79) in the semiclassical i i )
limit. . . w(X,u,v,2)= L f W(y,z)ex I—'U“yz— zy)dy )
Note that the above Madelung’s fluid approach gives a R 2|y ' 2v v
classical-like picture of the e.m. radiation beam transport in (81)

terms of the modulus and phase of the wave function. i
Transform(80) has the inverse

VI. CONCLUSIONS, REMARKS, AND FUTURE 1
PERSPECTIVES pW(X’p'Z):ZJ w(X,u,v,2)

In this paper, we have proposed a deformation procedure,
which was recently used to give the quantumlike semiclassi-

pal description of the electronic'-r.ay optiEss], to dgscribe. The tomography transforrt80) was introduced in quantum
in a quantumlike context a transition from geometrical optlcsoptiCS [28], and its partial casé81) was introduced in ana-
to wave optics that is alternative to the one proposed betic signal processing29] and was applied to the quantum

Gloge and Marcusfl]. . problem of diffraction in time if30]. Below we discuss the
We have given a phase-space description of the geometilgperties of the tomography transform in relation to the

cal optics in terms of a classical probability density diStribu'quantumlike description of light beams. The function
tion of the light rays for an arbitrary refractive index. In this W(X,u,v,2) is a non-negative function; it is obvious from
way, taking into account the quantumlike uncertainty re"'3"Eq. (81). This function contains the same information on the

tion (diffraction limit) between the rms transverse ray posi-"ght beam as the Wigner functiof81), in view of relation
tion o, and the rms ray slope,, the above deformation 82).

procedure has allowed us to transit to a von Neumann—like  Thg fynction(80) has the meaning of the probability dis-
equation in the semiclassical approximation that provides fofiphtion function (tomographic probabilityfor random ob-
a Wigner-like picture of the radiation beam optics in the o aplex: for w=1,v=0, it reads

paraxial approximation.

In turn, this picture has allowed us to recover, in the semi- w(X,1,02)= |\If(X,z)|2.
classical approximation, the Fock—Leontovich parabolic
equation and its Gloge-Marcuse quantumlike interpretationLet us consider an initial reference frame in phase space
In this context, the possible negativity of the Wigner-like (x,p) of a light beam and introduce other reference frames
function has been correctly explained in terms of the abovehat are obtained from the initial one by rotatignith an
guantumlike uncertainty relation. angle ¢) and scaling(with a scaling parametex). The pa-

We have also determined the hierarchy of the momentametersu,v are connected with the rotation and scaling pa-
equations associated with the von Neumann-like equatiomameters by the following relationships:

Xexgi(X—uq—vp)]dudvdX. (82
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w=ecosp, v=e *sing. (83 and is normalized if the light-beam wave function is normal-

ized,

The meaning of tomographic probability is that it is deter-

mined as the modulus squared of the light-beam wave func- 2

tion in an ensemble of all reference frames in phase space f W(X*“’V’Z)dXZJ [V (x2)[dx=1.

obtained from the initial reference frame by rotation and

scaling. Due to this, tomographic probability depends on paThus, for the light-beam description one can use tomogra-

rameters of the reference frame of the enseniB®. As  phic probability alternatively to the light-beam wave func-

follows from Egs.(80) and(82), tomographic probability is tion or Wigner quasidistribution function. Due to the depen-

related to the Wigner-like function by an invertable integraldence on extra parameters, tomographic probability contains

transform, is a homogenious functi¢®1] the information on the profiles of the modulus of light-beam
wave function in all reference frames in the light-ray phase

1 space obtained by the linear canonical transfd@rotation
w(aX.ap,av,z)= EW(X”“’V’Z)’ 84) alrald scaling from tr>1/e initial reference frame.
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